Acta Crystallographica Section C
Crystal Structure
Communications
ISSN 0108-2701

The cyclic vanadylacetate $\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right)\left[\mathrm{V}_{4} \mathrm{O}_{8}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{NO}_{3}\right)\right]$

Dirk Wulff-Molder and Manfred Meisel*

Anorganische und Allgemeine Chemie, Humboldt-Universität Berlin, Hessische
Strasse 1-2, D-10115 Berlin, Germany
Correspondence e-mail: manfred=meisel@chemie.hu-berlin.de

Received 2 February 1999
Accepted 23 September 1999
In the title complex, tetraphenylphosphonium μ_{4}-nitrato- $\kappa^{4} O$ -cyclo-tetrakis $\left(\mu\right.$-acetato- $\left.O: O^{\prime}\right)$ tetra- μ-oxo-tetrakis[oxovana$\operatorname{dium}(\mathrm{V})$], the anion lies about a twofold axis and consists of the cyclic $\left[\mathrm{V}_{4} \mathrm{O}_{8}\right]$ unit coordinated by four acetato ligands with interatomic V. .V.V distances of 3.269 (1) and 3.273 (1) \AA. The double-bonded O atom $[\mathrm{N}=\mathrm{O} \quad 1.102$ (6) and $\mathrm{N}-\mathrm{O}$ 1.268 (4) \AA] of the nitrato ligand links the four V atoms with $\mathrm{V}-\mathrm{O}$ bond distances of 2.613 (2) and 2.813 (2) \AA. The negative charge of the complex is balanced by tetraphenylphosphonium cations occupying the Na positions in the $\mathrm{NaCl}-$ type ionic packing of the structure.

Comment

Our attempts to synthesize $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{VO}_{2}\left(\mathrm{NO}_{3}\right)_{2}\right]$ resulted in the formation of the title compound, $\left(\mathrm{PPh}_{4}\right)\left[\mathrm{V}_{4}^{\mathrm{V}} \mathrm{O}_{8}\right.$ $\left.\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{NO}_{3}\right)\right]$, (I). Similar cyclic oxovanadium carboxylate complexes were described previously by Rehder (1994) and Priebsch et al. (1991) in $\left[\mathrm{V}^{\mathrm{V}}{ }_{3} \mathrm{~V}^{\mathrm{IV}} \mathrm{O}_{7} \mathrm{OH}\left({ }^{t} \mathrm{BuCH}_{2^{-}}\right.\right.$ $\left.\mathrm{COO})_{4} \mathrm{~K}\right]\left[{ }^{t} \mathrm{BuCH}_{2} \mathrm{COO}\right] \cdot 2^{t} \mathrm{BuCH}_{2} \mathrm{COOH}$ and by Heinrich et al. (1989) in the compound $\left(\mathrm{NEt}_{4}\right)_{2}\left[\mathrm{~V}_{3}{ }_{3} \mathrm{~V}^{\mathrm{IV}} \mathrm{O}_{8}(\mathrm{tca})_{4}\left(\mathrm{NO}_{3}\right)\right]$-$\mathrm{H}_{2} \mathrm{O}$ ($\mathrm{tca}^{-}=$thiophene-2-carboxylate). Furthermore, the [$\mathrm{V}_{4} \mathrm{O}_{8}$] moiety was observed as a building unit in the oxovanadium phosphonate $\left(\mathrm{NBu}_{4}\right)_{2}\left[\left(\mathrm{~V}_{4}^{\mathrm{V}} \mathrm{O}_{8}\right)_{2} \mathrm{OV}^{\mathrm{IV}}\left(\mathrm{H}_{2} \mathrm{O}\right)_{4}\left(\mathrm{PhPO}_{3}\right)_{8^{-}}\right.$ $\left.\mathrm{Cl}_{2}\right] \cdot 2 \mathrm{Et}_{2} \mathrm{O} \cdot 2 \mathrm{MeOH} \cdot 4 \mathrm{H}_{2} \mathrm{O}$ (Chen \& Zubieta, 1994), the

(I)
$\left[\mathrm{V}_{5} \mathrm{O}_{9}\right]$ group of compounds $\left(\mathrm{NEt}_{4}\right)_{2}\left[\mathrm{~V}^{\mathrm{V}} \mathrm{V}^{\mathrm{IV}}{ }_{4} \mathrm{O}_{9}(\mathrm{tca})_{4}-\right.$ $\mathrm{Cl}] \cdot \mathrm{MeCN}$ (Heinrich et al., 1989) and $\left(\mathrm{Me}_{2} \mathrm{NH}_{2}\right)_{5}\left(\mathrm{NH}_{4}\right)$ $\left[\left(\mathrm{V}^{\mathrm{V}} \mathrm{V}^{\mathrm{IV}}{ }_{4} \mathrm{O}_{9}\right) \mathrm{V}^{\mathrm{IV}}{ }_{2} \mathrm{O}_{4}\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}\left(\mathrm{PhPO}_{3}\right)_{8}\left(\mathrm{NH}_{4} \mathrm{Cl}\right)_{2}\right] \cdot 5 \mathrm{H}_{2} \mathrm{O} \cdot 4 \mathrm{DMF}$ (Müller et al., 1992), and the isopolyvanadates $\mathrm{Cs}_{9}\left[\mathrm{H}_{4} \mathrm{~V}^{\mathrm{IV}}{ }_{18}{ }^{-}\right.$ $\left.\mathrm{O}_{42} X\right] \cdot 12 \mathrm{H}_{2} \mathrm{O}\left(X=\mathrm{Br}^{-}\right.$or $\left.\mathrm{I}^{-}\right)$(Müller et al., 1990). The complex vanadate ion $\left[\mathrm{V}_{4}^{\mathrm{V}} \mathrm{O}_{8}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{4}\left(\mathrm{NO}_{3}\right)\right]^{-}$reported

Figure 1
The structure of the cyclic anion of (I) showing 50% probability displacement ellipsoids and the atom-numbering scheme. Bonds between V and O atoms are shown by heavy lines. [Symmetry code: (i) $1-x, \frac{1}{2}-y, z$.]
here is the first example of a non-reduced cyclic vanadyl carboxylate ion. Its partly reduced counterpart $\left[\mathrm{V}^{\mathrm{V}} \mathrm{V}^{\mathrm{IV}} \mathrm{O}_{8^{-}}\right.$ (tca) $\left.)_{4}\left(\mathrm{NO}_{3}\right)\right]^{2-}$, investigated by Heinrich et al. (1989), indicates the capability of this type of compound to participate in reversible redox reactions.

The structure of (I) (Fig. 1) consists of two crystallographically different phosphonium cations, P6 and P7, occupying special positions with site symmetry $\overline{4}$ (Wyckoff b and a, respectively). The cyclic anions are placed in the resulting gaps of site symmetry 2 (Wyckoff e), with the twofold axis of the $C_{2 v}$ symmetry of the anion coinciding with the fourfold screw axis of the crystal symmetry. Four V atoms in square pyramidal coordination are corner-connected to form a cyclic tetramer. The two lower basal O atoms of the $\left[\mathrm{OVO}_{4}\right.$] pyramids belong to acetato ligands, each of them linking two metal centres. Bond distances and angles (Table 1) agree with the data of the compounds described by Heinrich et al. (1989), Priebsch et al. (1991) and Chen \& Zubieta (1994) (V=O 1.541.65, V-O 1.77-2.07 and V...O 2.02-2.79 A). Mean plane calculations yield a mean distance of 0.37 (2) \AA for the metal atoms above the basal plane of the square pyramids (atoms used for V 1 were $\mathrm{O} 21, \mathrm{O} 31, \mathrm{O} 23$ and O24 ${ }^{\mathrm{i}}$, and for $\mathrm{V} 2 \mathrm{O} 21^{\mathrm{i}}$, O31, O13 and O14). Valence sum calculations (Brese \& O'Keeffe, 1991) clearly revealed the valence of +5 for both symmetry independent V atoms.

The two different V…O bond distances of $2.613(2)(\times 2)$ and $2.813(2) \AA(\times 2)$ to the double-bonded O atom of the central nitrate anion $[\mathrm{N}=\mathrm{O} 1.102$ (6) and $\mathrm{N}-\mathrm{O} 1.268$ (4) \AA] , which reflect the local $C_{2 v}$ symmetry of the $\left[\mathrm{V}_{4} \mathrm{O}_{8}(\mathrm{Ac})_{4}\left(\mathrm{NO}_{3}\right)\right]^{-}$anion (Fig. 1), are remarkable. This low symmetry is in good agreement with the observations of Heinrich et al. (1989) for $\left[\mathrm{V}_{4} \mathrm{O}_{8}(\mathrm{tca})_{4}\left(\mathrm{NO}_{3}\right)\right]^{2-} \quad[\mathrm{V} \cdots \mathrm{O}$ 2.564 (13) -2.793 (14) Å]. Calculations of the angles between the least-squares basal planes of opposing $\left[\mathrm{OVO}_{4}\right]$ pyramids yielded $60.41(5)$ and $78.31(5)^{\circ}$ for $\mathrm{V} 1 / \mathrm{V} 1^{\mathrm{i}}$ and $\mathrm{V} 2 / \mathrm{V} 2^{\mathrm{i}}$, respectively, consistent with the $C_{2 v}$ symmetry.

Experimental

Compound (I) was obtained by reacting $\left(\mathrm{Ph}_{4} \mathrm{P}\right)\left[\mathrm{VO}_{2} \mathrm{Cl}_{2}\right]$ with AgNO_{3} in acetonitrile under anaerobic conditions. On slow evaporation of the filtered solution, red cube-shaped crystals up to 2 mm in diameter
were obtained, which were stable in air (yield 70%, based on V). It is assumed that the acetato ligands are formed by acid hydrolysis of the acetonitrile solvent caused by traces of water.

Crystal data

$\left(\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{P}\right)\left[\mathrm{V}_{4} \mathrm{O}_{8}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{4}\left(\mathrm{NO}_{3}\right)\right]$
$M_{r}=969.32$
Tetragonal, $I 4_{1} / a$
$a=15.856$ (2) A
$c=29.753$ (5) A
$V=7480.3(18) \AA^{3}$
$Z=8$
$D_{x}=1.721 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 5000
\quad reflections
$\theta=8.1-20.7^{\circ}$
$\mu=1.095 \mathrm{~mm}^{-1}$
$T=200(2) \mathrm{K}$
Prism, dark red
$0.23 \times 0.23 \times 0.15 \mathrm{~mm}$

Data collection

Stoe IPDS diffractometer
Oscillation scans
Absorption correction: empirical
(DIFABS; Walker \& Stuart,
1983)
$T_{\text {min }}=0.547, T_{\text {max }}=0.867$
32401 measured reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.042$
$w R\left(F^{2}\right)=0.112$
$S=1.015$
3309 reflections
271 parameters
H -atom parameters constrained

Table 1
Selected geometric parameters ($\AA^{\circ},{ }^{\circ}$).

V1-O11	1.584 (2)	$\mathrm{V} 2-\mathrm{O} 21^{\text {i }}$	1.815 (2)
V1-O21	1.799 (2)	V2-O13	1.993 (2)
V1-O31	1.825 (2)	V2-O14	2.006 (2)
V1-O24 ${ }^{\text {i }}$	1.996 (2)	V2-O15	2.813 (2)
V1-O23	2.024 (2)	N5-O15	1.102 (6)
V1-O15	2.613 (2)	$\mathrm{N} 5-\mathrm{O} 25^{\mathrm{i}}$	1.268 (4)
V2-O12	1.582 (2)	N5-O25	1.268 (4)
V2-O31	1.797 (2)		
$\mathrm{O} 11-\mathrm{V} 1-\mathrm{O} 21$	102.58 (10)	$\mathrm{O} 21^{\mathrm{i}}-\mathrm{V} 2-\mathrm{O} 13$	154.03 (9)
O11-V1-O31	102.95 (10)	$\mathrm{O} 12-\mathrm{V} 2-\mathrm{O} 14$	100.27 (11)
$\mathrm{O} 21-\mathrm{V} 1-\mathrm{O} 31$	96.58 (9)	$\mathrm{O} 31-\mathrm{V} 2-\mathrm{O} 14$	153.78 (9)
$\mathrm{O} 11-\mathrm{V} 1-\mathrm{O} 24^{\text {i }}$	98.73 (10)	$\mathrm{O} 21^{\mathrm{i}}-\mathrm{V} 2-\mathrm{O} 14$	85.80 (9)
$\mathrm{O} 21-\mathrm{V} 1-\mathrm{O} 24^{\text {i }}$	88.56 (9)	O13-V2-O14	79.18 (9)
$\mathrm{O} 31-\mathrm{V} 1-\mathrm{O} 24^{\mathrm{i}}$	155.99 (9)	$\mathrm{O} 12-\mathrm{V} 2-\mathrm{O} 15$	175.74 (12)
$\mathrm{O} 11-\mathrm{V} 1-\mathrm{O} 23$	98.41 (10)	$\mathrm{O} 31-\mathrm{V} 2-\mathrm{O} 15$	73.60 (8)
$\mathrm{O} 21-\mathrm{V} 1-\mathrm{O} 23$	157.27 (9)	$\mathrm{O} 21^{\mathrm{i}}-\mathrm{V} 2-\mathrm{O} 15$	73.23 (8)
$\mathrm{O} 31-\mathrm{V} 1-\mathrm{O} 23$	87.02 (9)	$\mathrm{O} 13-\mathrm{V} 2-\mathrm{O} 15$	83.91 (8)
$\mathrm{O} 24^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 23$	79.69 (8)	O14-V2-O15	82.92 (8)
O11-V1-O15	177.55 (10)	$\mathrm{V} 1-\mathrm{O} 21-\mathrm{V} 2^{\mathrm{i}}$	129.52 (11)
$\mathrm{O} 21-\mathrm{V} 1-\mathrm{O} 15$	78.94 (8)	$\mathrm{V} 2-\mathrm{O} 31-\mathrm{V} 1$	129.27 (12)
O31-V1-O15	78.69 (8)	$\mathrm{O} 15-\mathrm{N} 5-\mathrm{O} 25^{\text {i }}$	122.1 (3)
$\mathrm{O} 24{ }^{\mathrm{i}}-\mathrm{V} 1-\mathrm{O} 15$	79.33 (8)	O15-N5-O25	122.1 (3)
O23-V1-O15	79.80 (8)	$\mathrm{O} 25^{\mathrm{i}}-\mathrm{N} 5-\mathrm{O} 25$	115.9 (6)
$\mathrm{O} 12-\mathrm{V} 2-\mathrm{O} 31$	103.81 (11)	$\mathrm{V} 1{ }^{\mathrm{i}}$ - $\mathrm{O} 15-\mathrm{V} 1$	119.04 (14)
$\mathrm{O} 12-\mathrm{V} 2-\mathrm{O} 21^{\text {i }}$	104.06 (11)	$\mathrm{V} 1^{\mathrm{i}}-\mathrm{O} 15-\mathrm{V} 2^{\mathrm{i}}$	74.09 (7)
$\mathrm{O} 31-\mathrm{V} 2-\mathrm{O} 21^{\mathrm{i}}$	98.14 (9)	$\mathrm{V} 1-\mathrm{O} 15-\mathrm{V} 2^{\text {i }}$	73.98 (7)
$\mathrm{O} 12-\mathrm{V} 2-\mathrm{O} 13$	99.41 (11)	$\mathrm{V} 2{ }^{\mathrm{i}}-\mathrm{O} 15-\mathrm{V} 2$	114.31 (13)
O31-V2-O13	86.77 (9)		

Symmetry code: (i) $1-x, \frac{1}{2}-y, z$.

References

Brese, N. E. \& O’Keeffe, M. (1991). Acta Cryst. B47, 192-197.
Chen, Q. \& Zubieta, J. (1994). J. Chem. Soc. Chem. Commun. pp. 1635-1636.
Heinrich, D. D., Folting, K., Streib, W. E., Huffman, J. C. \& Christou, G. (1989). J. Chem. Soc. Chem. Commun. pp. 1411-1413.

Müller, A., Hovemeier, K., Krickemeyer, E. \& Bögge, H. (1992). Angew. Chem. 104, 1214-1216.
Müller, A., Peng, M., Rohlfing, R., Döring, J. \& Krickemeyer, E. (1990). Angew. Chem. 102, 927-929.
Priebsch, W., Rehder, D. \& von Oeyenhausen, M. (1991). Chem. Ber. 124, 761764.

Rehder, D. (1994). In Polyoxometalates: From Platonic Solids to AntiRetroviral Activity, edited by M. T. Pope \& A. Müller. Dordrecht: Kluwer.
Sheldrick, G. M. (1985). SHELXS86. Program for the Solution of Crystal Structures. University of Göttingen, Germany.
Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Structures. University of Göttingen, Germany.
Stoe \& Cie (1996). IPDS. Imaging Plate Diffractometer System. Version 2.75. Stoe \& Cie, Darmstadt, Germany.
Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.
Zsolnai, L. \& Pritzkow, H. (1994). ZORTEP. University of Heidelberg, Germany.

